

FLORENCE INTERNATIONAL SCHOOL CLASS- IX WORKSHEET NO: 8 MATHS

NAME:

DATE: 08/04/2020

TOPIC: RATIONAL AND IRRATIONAL NUMBERS

Please follow the link <u>https://www.youtube.com/watch?v=aNOBaqFF0_M&feature=youtu.be</u> Representation of irrational numbers on number line:

Irrational number as a non-terminating non-repeating decimal.

Consider the following square roots of non-perfect square numbers (Irrational numbers).

√2 = 1.4142135

J3 = 1,730508

JS = 2.2360680

All these are non-repeating, non-terminating decimals.

Hence, an alternate definition for an irrational number is:

Any number that cannot be expressed as a decimal with a finite number of digits is called an irrational number.

∛4, ∛2, √6 etc., are some more examples of irrational numbers.

Geometrical Representation of Irrational Numbers Every rational number has a unique position on the number line.

But does every point on the number line represent a rational number? To verify let us draw a number line.

Consider a \angle OAB such that OA = 1 unit AB = 1 unit \angle OA8 - 90°

According to Pythagoras theorem,

 $OB^2 = OA^2 + AB^2$

Some Properties of Rational Numbers a) Every rational number is either a terminating decimal or a repeating decimal. Example:

 $\frac{3}{5} = 0.6$ (Terminating) $\frac{6}{7} = 0.857142 \overline{857142}$ (Repeating) $\frac{9}{11} = 0.\overline{81}$ (Repeating) $\frac{5}{8} = 0.625$ (Terminating)

EXERCISE

Answer the following questions in note book.

Q1. Represent the given numbers on the number line

- (a) $\sqrt{2}$ (b) $\sqrt{3}$ (c) $\sqrt{5}$ (d) $\sqrt{7}$ (e) $\sqrt{19}$
- Q2. Write the following in decimal form and say what kind of decimal expansion each has (terminating , non terminating and recurring)
 - (i) $\frac{36}{100}$ (ii) $\frac{1}{11}$ (iii) $\frac{3}{13}$ (iv) $4\frac{1}{8}$ (v) $\frac{2}{11}$ (vi) $\frac{329}{400}$

